Center Innovation Fund: MSFC CIF

Towards In-Space Additive Manufacturing of Thermosets and Embedded Fibers

Completed Technology Project (2015 - 2016)

Project Introduction

It is proposed to overcome current deficiencies in ISAM by developing thermal-curing thermosets with embedded fibers, and to move this new technology toward commercial feasibility. The work involves exploring benefits of low-gravity for innovative control of liquid spreading during extrusion, and quantifying the proper conditions for embedding composite fibers in the thermosets. The proposed effort includes these technical tasks: (i) Develop analytical simulations of the proposed ISAM methodology. (ii) Extrude droplets, puddles, and linear beads of thermal-curing thermosets on heated surfaces, and compare to simulations. (iii) Use calibrated models to predict performance in varied-gravity environments. (iv) Embed composite fibers into extruded thermosets using a modified 3D printer.

Anticipated Benefits

In the future, this work in design and predictive modeling will be useful for AM and deposition of new materials beyond thermal-curing thermosets with embedded fibers, such as recycled feedstock, concrete, high-temperature thermoplastics, and even regolith.

Primary U.S. Work Locations and Key Partners

Towards In-Space Additive Manufacturing of Thermosets and Embedded Fibers

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3

Center Innovation Fund: MSFC CIF

Towards In-Space Additive Manufacturing of Thermosets and Embedded Fibers

Completed Technology Project (2015 - 2016)

Organizations Performing Work	Role	Туре	Location
★Marshall Space Flight Center(MSFC)	Lead Organization	NASA Center	Huntsville, Alabama
Rutgers University- New Brunswick	Supporting Organization	Academia	New Brunswick, New Jersey

Primary U.S. Work Locations	
Alabama	New Jersey

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Marshall Space Flight Center (MSFC)

Responsible Program:

Center Innovation Fund: MSFC CIF

Project Management

Program Director:

Michael R Lapointe

Program Manager:

John W Dankanich

Principal Investigator:

Patrick V Hull

Technology Maturity (TRL)

Center Innovation Fund: MSFC CIF

Towards In-Space Additive Manufacturing of Thermosets and Embedded Fibers

Completed Technology Project (2015 - 2016)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - □ TX12.4 Manufacturing
 - ☐ TX12.4.1

 Manufacturing

 Processes

